ELECTROCHEMICAL BEHAVIOUR OF AMORPHOUS $V_2O_5(-P_2O_5)$ CATHODES FOR LITHIUM SECONDARY BATTERIES

Y. SAKURAI, S. OKADA, J. YAMAKI and T. OKADA*

NTT Electrical Communications Laboratories, NTT, Tokai, Ibaraki-ken, 319-11 (Japan)

Summary

The electrochemical behaviour of amorphous vanadium oxides $(a-V_2O_5 and a-V_2O_5-P_2O_5)$ cathodes in lithium cells has been investigated. The reversibility of the cathodes is superior to that of $c-V_2O_5$ and the cathodes can operate for >300 cycles. The relationship between cathode composition and cycle performance has been determined, and P_2O_5 , as a network-former, has been found not to harm the reversibility of cathodes. The degradation in capacity with cycling of the Li/a- $V_2O_5(-P_2O_5)$ system is due to deterioration of the anode, *i.e.*, an increased polarization on discharge.

Introduction

Many cathode active materials (CAMs), which can incorporate Li⁺ ions reversibly, have been widely investigated [1]. Specifically, crystalline CAMs, such as NbSe₃, TiS₂, V₆O₁₃, etc., have been examined from a crystallographic point of view. In recent years, amorphous materials have attracted attention because of their unique isotropic, flexible and low-density structure. The Exxon group has extensively studied amorphous transition metal chalcogenide CAMs, and has reported [2] the superior electrochemical properties of a-MoS₃. However, the performance of the latter compound is still below that required for the practical application of lithium cells. Other investigators have also evaluated a-CAMs as reversible cathodes, *e.g.*, a-LiV₃O₈ [3] and a-Cr₃O₈ [4]. In 1984, the authors demonstrated [5] the rechargeability of amorphous V_2O_5 -P₂O₅ (V₂O₅ 60 mole%) could not be recharged [6]. This paper reports detailed studies of the electrochemical behaviour of a-V₂O₅-P₂O₅, especially in comparison with that of c-V₂O₅.

^{*}Present address: Research and Development Division, Hitachi Chemical Co. Ltd., Shimodate, Ibaraki-ken, 308, Japan.

Experimental

a- $V_2O_5-P_2O_5$ (95-60 mole% V_2O_5) compounds were prepared by melting reagent-grade raw oxides in platinum crucibles for 1 h at 750 °C, followed by quenching on a water-cooled iron block. Pure a- V_2O_5 was obtained by the single-roll quenching technique. X-ray diffraction (XRD) studies and thermal analysis indicated that these vitreous oxides were amorphous. The cathode preparation, cell assembly, and electrochemical techniques used in the studies have been described previously [5]. The "apparent" chemical diffusion coefficients of Li⁺, \widetilde{D} , were measured by a galvanostatic pulse relaxation technique [7], using discs of the Teflonbonded cathode mixture. The electrolytes were 1 M LiClO₄ in a 1:1 (by volume) mixture of propylene carbonate (PC) and dimethoxyethane (DME), and 1.5 M LiAsF₆ in 2-methyltetrahydrofuran (2-MeThF). Unless otherwise noted, the latter electrolyte was used.

Results and discussion

Cells using $a-V_2O_5-P_2O_5$ CAMs were cycled between 2 V and 3.5 V at 0.5 mA cm⁻². The cell discharge profiles and characteristics at the 100th cycle are given in Fig. 1 and Table 1, respectively. The cycling profile at a low rate

Fig. 1. Discharge profiles of $a-V_2O_5-P_2O_5$ CAMs at 100th cycle.

TABLE 1

Cathode characteristics of $a-V_2O_5-P_2O_5$ CAMs at 100th cycle (0.5 mA cm⁻², 2 - 3.5 V)

V ₂ O ₅ content (mole%)	Residual Li (Li/mole)	Reversible Li uptake	
		(Li/mole)	(Li/V)
100	0.53	1.29	0.65
95	0.66	1.23	0.65
	0.55*	1.42*	0.75*
90	0.78	1.00	0.56
78	0.85	0.81	0.52
70	0.74	0.56	0.40
60	0.71	0.32	0.27

 $*0.125 \text{ mA cm}^{-2}$.

for a CAM of a-95 mole% $V_2O_5-P_2O_5$ is also shown in Fig. 1. Not one of the CAMs exhibited the voltage plateau usually found with a two-phase reaction. It is therefore concluded that P_2O_5 acts as a network-former, and that V is only effective in the Li⁺ accommodation reaction through its valence change. The reversible uptake of lithium (*i.e.*, Li/V ratio) of a-CAMs ($V_2O_5 \ge 80$ mole%) is similar to that of V_6O_{13} (Li/V = 0.5 - 0.6) [8]. With a-CAMs ($V_2O_5 \ge 80$ mole%), some of the inserted Li⁺ ions were trapped in the host structure within a few cycles and could not be recharged. Although attempts were made to raise the end-of-charge voltage (*i.e.*, $3.5 V \rightarrow 4.0 V$), and thereby to widen the cycling voltage region, by using a PC/DME//1 M LiClO₄ electrolyte, which has a higher oxidation potential and conductivity than 2-MeTHF/1.5 M LiAsF₆, only a slight gain (~20%) in charge efficiency was observed at 0.5 mA cm⁻². The amount of residual lithium closely corresponded to the low-diffusion coefficient region (see Fig. 2) for a-95 mole% $V_2O_5-P_2O_5$.

The data given in Fig. 3 demonstrate the superior reversibility of amorphous $V_2O_5-P_2O_5$ compared with crystalline V_2O_5 . While the capacity of c- V_2O_5 gradually degraded with cycling, that of a- $V_2O_5-P_2O_5$ remained virtually constant. These findings clearly confirm previous proposals of the authors [5]. The slight losses in the capacity of a-CAMs observed after the

Fig. 2. Relation between apparent chemical diffusion coefficient of a-95 mole% V_2O_5 - P_2O_5 and amount of Li⁺ inserted.

Fig. 3. Capacity change with cycling. (Li/c-V₂O₅, Li/a-V₂O₅ and Li/a-V₂O₅-P₂O₅).

Fig. 4. Relationship between capacity and overvoltage measured at the end of discharge and charge.

200th cycle were due to an increase in the lithium electrode polarization (see below).

Figure 4 shows the relationship between cycling capacity and the change in overvoltage (η) with cycling. A decline in the capacity coincides with a change in the discharge overvoltage (η_D) and is apparently independent of the charge process. Studies have indicated [9] that prolonged cycling of lithium electrodes results in an increase in the discharge overvoltage due to the formation of an inactive film on the electrode. Although η_D and η_C in Fig. 4 also include contributions from the ohmic drop and cathode overvoltage, the changes in η_D and η_C during cycling are in good agreement with results from cycling tests of lithium electrodes. Therefore, it is concluded that the decline in capacity of the Li/a-V₂O₅-P₂O₅ cell is due to failure of the lithium electrode.

The relationship between V_2O_5 content in $a-V_2O_5-P_2O_5$ and cycle performance is presented in Fig. 5. Although the capacities of the a-CAMs decreased with decrease in the V_2O_5 content, as was expected, the overall inherent rechargeability clearly demonstrated the stability of $a-V_2O_5-P_2O_5$ CAM electrodes in extended cycling. It is clear that P_2O_5 , as a networkformer, does not harm the reversibility of a-CAMs. It should be noted that the phenomenon of decreasing capacity, particularly found in V_2O_5 -rich a-CAMs, is not due to cathode degradation, but rather is caused by anode

Fig. 5. Dependence of capacity on composition of $a V_2O_5 - P_2O_5$.

deterioration. In fact, replacement of the anode with a fresh lithium electrode after test termination resulted in a recovery of the initial capacity and further cycling performance. Clearly, rechargeable $\text{Li/a-V}_2\text{O}_5$ -P₂O₅ cells with improved high energy density and service life will be achieved if a means can be found to suppress deterioration of the anode during charge/discharge cycling.

Acknowledgements

The authors thank Prof. Kenji Suzuki of Tohoku University for supplying the $a-V_2O_5$ sample, and M. Yamaguchi and C. Uemura for their helpful discussions.

References

- 1 K. M. Abraham, J. Power Sources, 7 (1981/2) 1.
- 2 M. S. Whittingham, J. Electroanal. Chem., 118 (1981) 229.
- 3 K. Nassau and D. W. Murphy, J. Non-Cryst. Solids, 44 (1981) 297.
- 4 Y. Takeda, R. Kanno, Y. Tsuji and O. Yamamoto, J. Electrochem. Soc., 131 (1984) 2006.
- 5 Y. Sakurai and J. Yamaki, J. Electrochem. Soc., 132 (1985) 512.
- 6 T. Pagnier, M. Fouletier and J. L. Souquet, Solid State Ionics, 9 & 10 (1983) 649.
- 7 S. Basu and W. L. Worrell, in P. D. Vashishta, J. N. Mundy and G. K. Shenoy (eds.), Fast Ion Transport in Solids, Elsevier, Amsterdam, 1979, p. 149.
- 8 K. M. Abraham, J. Electrochem. Soc., 128 (1981) 2493.
- 9 S. Tobishima, M. Arakawa, T. Hiral and J. Yamaki, J. Power Sources, 20 (1987) 293.